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Abstract

In this paper, the equations governing the transport of gas mixtures through porous media in 1D geometry and in absence of mass
sources are examined. When the mass fluxes are determined by external conditions, the transport equations can be solved to find the
variations of gas composition through the media. For this class of problems, we show that the convective transport mechanism can
be, in many cases, neglected, regardless of the physical properties of the porous media and of the flux intensities. An estimate of the
maximum error made in neglecting the convective term is provided. A matrix analytical solution of the diffusion equations is given
for the general case of N-components gas mixtures. Explicit analytical solutions are derived in two particular cases.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The transport of multi-component gas mixtures through
porous media is a physical phenomenon that plays a funda-
mental role in many important applications. At present, for
example, gas separation devices and fuel cell electrodes are
the subject of a large number of experimental and model-
ling studies. The correct description of such phenomenon
is, therefore, a living subject in the literature. Recently,
Suvanwarangkul et al. [1] have compared different models
commonly used in the description of gas transport inside
porous fuel cells anodes: the Fick’s model [2–4], the Dusty
Gas Model (DGM) [5,6] and the Stefan Maxwell model
[7,8]. As a conclusion, they find that the DGM is, in gen-
eral, the most suitable model, but, since it requires a com-
plex numerical solution they suggest its use only in case of
necessity. However, their study is limited to a few specific
gas mixtures and, therefore, it lacks of generality. Further-
more, they assume, without a rigorous justification, that
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the convective transport is negligible. This work aims to
overcome these problems, as it provides (i) a general and
rigorous analysis of the maximum error made in neglecting
the convective term and (ii) a matrix analytical solution of
the DGM diffusion equations.

The flux equations describing gas transport through a
porous media can be derived by simple momentum transfer
arguments [9]. There are three mechanisms by which a
given species may loose momentum:

� Transfer to another species as a result of collisions
between pairs of unlike molecules (Stefan–Maxwell).
� Direct transfer to the pores walls through particle-wall

collisions (Knudsen).
� Indirect transfer to the wall via a sequence of molecule–

molecule collisions terminating in a molecule–wall colli-
sion (Darcy).
1.1. Stefan–Maxwell

The Stefan–Maxwell equations [10,11] describe the diffu-
sion in multi (n) component gas mixtures
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Nomenclature

a average pore radius
[a] right eigenvectors of [u]
(b) eigenvalues of [u]
B0 Darcy law constant (pore characteristics)
D dimensionless parameter depending on diffusion

coefficients
DK

i Knudsen diffusion coefficient of species i

Di,j diffusion coefficient of the pair i–j in a gas mix-
ture

F Faraday constant
I cell current density
Mi molecular mass of component i

n number of gas components
N dimensionless parameter depending on molar

fluxes
Ni molar flux of gas species i

p gas pressure
pi partial pressure of species i
R gas constant
Ri mass source of species i

T temperature
xi molar fraction of species i

z 1D coordinate

Greek symbols

a dimensionless parameter (Darcy versus
Knudsen)

c dimensionless constant
d ratio between diffusive and convective terms
e porosity
[u] Stefan–Maxwell equation matrix
li gas viscosity of species i

r2 molecular cross section
s tortuosity
(f), (n) diffusion equation vectors
X collision integral

Subscripts and superscripts

av average
D diffusive
i, j chemical species
in ingoing (at z = 0)
max maximum
min minimum
out outgoing
ref reference value
r, s chemical species
V convective
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r p
RT

xi

� �
¼
X

j

Njxi � Nixj

Di;j
: ð1Þ

In Eq. (1), the indices i and j run over the n components of
the gas mixture, xi and Ni are the molar fraction and molar
flux of species i. Di,j is the i and j pair diffusion coefficient,
which can be expressed, by kinetic theory arguments, in
terms of the molecular masses Mi and Mj and of the i

and j molecular cross section r2
i;j, as [12]:

Di;j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 3 MiþMj

2MiMj

q
pr2

i;j
: ð2Þ

Eq. (1) is based on the hypothesis that each component of a
gas mixture moves in a continuous medium, where it is sub-
ject to the friction forces caused by the other gas
components.

The consequences of neglecting the friction forces of the
gas molecules with any solid framework (i.e. no external
force acts on the gas) are that there is no pressure gradient
and that the diffusion equations are independent of the
inertial reference frame (i.e. they contain no information
about the global motion of the fluid).

The absence of a global pressure gradient can be easily
verified: by summing the n Stefan–Maxwell equations (1),
considering that, by definition,
P

ixi ¼ 1, and using the
symmetry of the pair diffusion coefficients, we get:

r p
RT

� �
¼ 0:

As a consequence only n � 1 out of the n equations (1) are
independent. By imposing mass conservation conditions:

r � N i ¼ Ri; ð3Þ
where Ri is the possible mass source of species i, we get n

more scalar equations.
But, as we have n vector unknowns (Ni) and n � 1 inde-

pendent scalar unknowns (xi), there is one vector equation
lacking and one scalar equation too much. This reflects the
absence of information about the global motion of the flux
mentioned above and a specific choice of inertial frame is
required to close the system. If, for example, we choose
the frame where the mean gas motion is zero, we can write:X

i

N i ¼ 0:
1.2. Knudsen

When the diffusion process occurs inside a porous med-
ium, the friction forces between the gas species and the
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pores walls may not be negligible. In particular, when the
mean pores diameter is much smaller than the mean free
path of the gas molecules, the number of gas–solid colli-
sions becomes much larger than the number of gas–gas col-
lisions. In such conditions, the momentum transfer is
dominated by the gas–solid friction force term and the
fluxes are described by the Knudsen equations [13]:

r p
RT

xi

� �
¼ � N i

DK
i

; ð4Þ

where the i species Knudsen diffusion coefficient DK
i can be

expressed in terms of the molecular mass and of the aver-
age pore radius a, as [9]:

DK
i � a

8RT
pMi

� �1
2

: ð5Þ

When the mean pores diameter is comparable to the mean
free path of the gas molecules, both the Stefan–Maxwell
and Knudsen momentum loss mechanisms have to be con-
sidered, as the molecules of a given species exchange
momentum both with molecules of different species and
with walls.

r p
RT

xi

� �
¼
X

j

Njxi � Nixj

Di;j
� Ni

DK
i

: ð6Þ

By summing the above equations, and considering thatP
ixi ¼ 1, we get:

r p
RT

� �
¼ �

X
j

Nj

DK
j

: ð7Þ

We see that the gas–solid friction forces cause a global
pressure gradient and provide as a reference frame the
frame solid with the porous media.

Eq. (6) together with Eq. (3) forms a system of n vector
and n scalar equations with n vector and n scalar
unknowns. A more rigorous derivation of Eq. (6) can be
found in the frame of the Dusty Gas Model [14].
1.3. Darcy

When the mean pore diameter is much larger than the
molecular mean free path lengths, and for pure (single
component) gases, the intra-molecular viscous friction
forces dominate with respect to the friction forces caused
by the collisions with the pore walls. In such conditions,
the fluxes are described by the Darcy law [15]:

Ni ¼ �
xiB0p
liRT

rp; ð8Þ

where li is the gas viscosity of species i and B0 is a factor,
which characterizes the porous media. For cylindrical
pores we have [9]:

B0 ¼
a2

8
: ð9Þ
When the mean pores diameter is comparable to the mean
free path of the gas molecules, both the Knudsen and the
Darcy mechanisms should be taken into account. Because
molecules exchange momentum with the walls either directly
or indirectly, the two mechanisms can be considered as occur-
ring in parallel and the total flux can be considered as the sum
of a viscous (convective) flux and a diffusive flux as:

Ni ¼ N V
i þ ND

i

with

NV
i ¼ �

xiB0p
liRT

rp

and

r pxi

RT

� �
¼
X

j

ND
j xi � ND

i xj

Di;j
� N D

i

DK
i

:

The equations above, form a set of 2n vector equations for
2n unknown fluxes. In the limit where one of the three
mechanisms dominates, this set reduces to the correspond-
ing Eqs. (1) and (4) or (8). It has been shown [9] that it also
provides a good description of the transport phenomena in
intermediate situations, where all three mechanisms may be
of comparable importance.

1.4. Porous media

The presence of the solid media causes also a decrease of
the volume free to gas diffusion and an extension of the
path that the gas should walk to cross the tortuous media.
These two effects can be described at a macroscopic level by
using the porosity (e) and the tortuosity (s) parameters and
by rescaling the pair and the Knudsen diffusion coefficients
according to:

D ¼ e
s

Dvoid;

where Dvoid is the corresponding parameter in the void
space.

The same rescaling applies also to the Darcy parameter
B0.

1.5. 1D equations

When there is a preferential direction of flux motion and
all the molar species flow along this direction, Eqs. (8) and
(6) can be written in scalar form:

Ni ¼ N V
i þ ND

i ;

NV
i ¼ �

xiB0p
liRT

op
oz

ð10Þ

and

1

RT
oðpxiÞ

oz
¼
X

j

N D
j xi � N D

i xj

Di;j
� ND

i

DK
i

; ð11Þ

where z is the coordinate along the flow direction.
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Fig. 1. Sketch of the diffusion media.
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The conservation equations (3) become

oNi

oz
¼ Ri: ð12Þ

When the mass sources are absent or located in a well-de-
fined portion of the porous media (the reactive region) in
the remaining part of the porous media (the diffusive re-
gion) Eq. (12) implies constant fluxes along the z-direction.
This situation is illustrated in Fig. 1.

In such case, following the boundary conditions, the
transport problems can be divided into two main classes:

� when the gas composition is known at both sides of the
porous media, the mass fluxes can be obtained by solv-
ing the transport equations;
� when the mass fluxes are determined by external condi-

tions, the transport equations can be solved to find the
variations of gas composition through the porous media.

In the following, we will consider only the problems
belonging to the latter class. The problems of reactant
transport toward (or from) the reaction sites often belong
to the latter class. Indeed, the value of the reactant fluxes
inside the diffusive region can be obtained by integrating
the mass conservation equation inside the reactive region:

Ni ¼ N in
i ¼

Z
reactive region

Ri þ N out
i :

When the outgoing flux N out
i is zero (for example when the

reactive region is contiguous to a non permeable media or
when the reactants are fully consumed by the reaction) the
value of the fluxes in the diffusive region is determined by
the integral of the mass sources. In a fuel cell, for example,
the electrochemical reactions occur inside a thin reactive re-
gion located between the gas impermeable electrolyte and
the electrode diffusive region. Inside the diffusive region,
the molar fluxes are constant and proportional to the cell
current density.

1.6. Paper summary

In the next section, we study how the convective term of
the flux equations influences the gas composition profiles.
It is seen that the convective term is very often negligible
regardless of the physical properties of the porous medium
and of the flux intensities. A rigorous quantitative estimate
of the maximum error made in neglecting the convective
term is provided for a two component gas mixture,
together with a generalized estimate for multi-component
mixtures. When this error is small, only the diffusive contri-
butions to the flux equations should be considered to deter-
mine the variations of gas composition through the porous
media. The simplified equations correspond to the Stefan–
Maxwell–Knudsen equations (11).

In Section 3, a matrix analytical solution of the diffusion
equations (11) is given.

In Section 4, the matrix procedure is used to find analyt-
ical solutions in the general two-component gas problem
and in a particular three-component application concern-
ing the anode of a solid oxide fuel cell. Finally, in Section
5, the results of this paper are discussed and conclusions
are drawn.
2. Comparison between the convective and diffusive

contribution to the molar fraction variations

When the molar fluxes are known, the set of flux equa-
tions (10) and (11) becomes a set of differential equations in
the molar fractions, which, once a proper set of boundary
conditions is provided, can be solved to get the molar frac-
tion profiles.

In order to assess the possibility to simplify the flux
equations by neglecting some of its composing terms, in
this section we study how the different mechanisms contrib-
ute to the molar fraction variations. To reach this goal, we
need first to rearrange suitably the flux equations.

Eqs. (10) and (11) can be written in compact form in
terms of the total fluxes:

p
RT
rxr þ

xr

RT
1þ B0p

lDK
r

� �
rp

¼ �
X
s 6¼r

xsNr � xrN s

Dr;s
� Nr

DK
r

: ð13Þ

By defining an average Knudsen diffusion coefficient as:

1

DK
av

¼
X

s

xs

DK
s

and the dimensionless parameter a as:

a ¼ B0p

lDK
av

ð14Þ

and by summing Eq. (13) on the index r, we obtain an
expression for the pressure gradient:

rp ¼ � RT
1þ a

X
s

Ns

DK
s

: ð15Þ



1 When the two fluxes have the same direction (N2 > 1), it exists a
particular value of the molar fractions x1 = N1/(N1 + N2) that cancels the
Stefan–Maxwell contribution. In such conditions and for very large pores
(the Knudsen term become negligible as well), the whole diffusive term
becomes very small and dmin becomes zero.
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By combining Eqs. (13) and (15), we get:

p
RT
rxr ¼

X
s 6¼r

xrN s � xsN r

Dr;s

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Stefan–Maxwell

þ xr

X
s

N s

DK
s

� Nr

DK
r

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Knudsen

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive terms

þ a
1þ a

X
s

Ns

DK
s

xr
DK

av

DK
r

� 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective term

: ð16Þ

In Eq. (16), the contributions of the different momentum
transfer mechanisms to the molar fraction variations have
been emphasized.

In the following, we first study the limiting conditions of
very small and very large pore radius, and then, we analyze
the relative importance of the convective mechanism in the
whole range of pore radii.

The parameter a (see Eq. (14)) gives a measure of the rel-
ative importance of the Darcy mechanism with respect to
the Knudsen one. By substituting Eqs. (5) and (9) in Eq.
(14), we see that a is proportional to the average pore
radius a. Therefore, in the limit of very small pore radius,
a becomes very small and the convective term in Eq. (16)
can be neglected. Moreover, in the limit of very small a,
the Stefan–Maxwell term in Eq. (16) can be neglected as
well and Eq. (16) reduces to the Knudsen equation (4).

In the opposite limit of very large pore radius, a
becomes very large and Eq. (16) becomes:

lim
a!1

p
RT
rxr

� �
¼ �

X
s 6¼r

xsN r � xrNs

Dr;s
� N r

DK
r

þ xr
DK

av

DK
r

X
s

Ns

DK
s

: ð17Þ

In the limit of large a, the Knudsen diffusion coefficients
become very large and the last two terms in Eq. (17) be-
comes negligible, and Eq. (17) reduces to the Stefan–Max-
well Eq. (1).

Here above, we have seen that in both limits of very
large and very small pore radius, the convective term in
Eq. (16) is negligible. To see if and in which conditions
the convective term of Eq. (16) is still negligible in the inter-
mediate pore radius range, the simple case of a two-compo-
nent gas is examined in Appendix A. The value of the ratio
d between the diffusive and the convective contributions to
the molar fraction variation is found to be larger than a
minimum value dmin:

d P dmin ¼
Nffiffi
c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

� D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2
p

þ N þ D
� �2

2D 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2
p� �

ðN þ DÞ
; ð18Þ

where

c ¼
B0pD1;2

lDK
1 DK

2

; N ¼ N 1 þ N 2

N 1 � N 2

;

D ¼ DK
2 � DK

1

DK
2 þ DK

1

¼
ffiffiffiffiffiffiffi
M1

p
�

ffiffiffiffiffiffiffi
M2

pffiffiffiffiffiffiffi
M1

p
þ

ffiffiffiffiffiffiffi
M2

p ð19Þ
are dimensionless variables: c is evaluated in Appendix B,
and it is seen to be approximately constant around the va-
lue of 0.13. N depends on the molar fluxes. When we are
dealing with reactive flows, one of the two species is the
reactant and the other is the product. In such case, the
fluxes N1 and N2 have opposite signs and N is comprised

between �1 and 1. The presence of the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2
p

in
Eq. (18) indicates that such condition is necessary in order
to have a minimum value of d.1

Without loss of generality, we can suppose D > 0,
(otherwise it is sufficient to exchange the 1 and 2 indices).
In such conditions, it can be seen that the minimum value
of dmin is obtained when N is worth one. Then we get:

dminðN ¼ 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� DÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ DÞc

p� 	2

2Dc
ð20Þ

or, by using the definition of D given in Eq. (19),

dminðN ¼ 1Þ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
c
ffiffiffiffiffi
M1

M2

qr� �2

c
ffiffiffiffiffi
M1

M2

q
� c

:

Another interesting case is N = 0 which corresponds to a
reaction transforming species 1 into species 2. In this case
we get:

dminðN ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

þ ffiffiffi
c
p� �2

D2c

¼ 1þ 2ffiffiffi
c
p

M1

M2

� �1
4 þ ffiffiffi

c
pffiffiffiffiffi

M1

M2

q
� 1

0
B@

1
CA

2

:

In Fig. 2, we plot dmin versus the mass ratio for both N = 1
and N = 0.

It is seen that the value of the ratio between the particle
masses can provide a sufficient criteria to neglect the con-
vective term of the flux equations. When the masses of spe-
cies 1 and 2 are very close, dmin goes to infinity meaning
that the convective term is negligible. In the opposite limit
of very different masses, dmin goes to 1. Clearly, in this
limit, the convective term can not be neglected.

For example, in the case of a hydrogen–water (mixture)
counter diffusion (anode of a solid oxide fuel cell), we get
N = 0, M1/M2 = 9, D = 0.5, c = 0.13 and dmin = 46.3. We
see that, in this case, by neglecting the convective term,
we make an error, at worse, around 2%.

The general case of a multi-component gas mixture is, of
course, more complicated and it is difficult to provide a rig-
orous estimate of the error made when neglecting the con-



Fig. 2. Minimum value of the ratio d between the diffusive and convective
contribution to the mass fraction variations as a function of the molecular
mass ratio. The full line has been obtained for N = 1 while the dashed line
for N = 0.
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vective term. It is, in particular, difficult to generalize the
condition N2 < 1, necessary in order to have a minimum
value of d (see footnote at page 10). To overcome this lim-
itation, we can consider the comparison problem in a
broader sense: for a given gas mixture composition and
porous media, we compare the maximum diffusive contri-
bution to the molar fraction variations with the maximum
convective contribution, obtainable by keeping the molar
fluxes under a fixed threshold value.

In Appendix C, the ratio between the maximum diffusive
and convective contributions to the molar fraction varia-
tion is calculated for the particular porous media which
maximize the convective contribution. It is found:

d ¼ D
2

ð1þ DÞ ffiffifficp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

þ ffiffiffi
c
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þð1þ cÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þc

qr :

ð21Þ
In Fig. 3, we plot d from Eq. (21) versus the mass ratio.

We see that, unless the molecular masses are very differ-
ent, the maximum convective contribution is limited to a
few percent of the maximum diffusive contribution.
Fig. 3. Value of the ratio d (from Eq. (21)) between the maximum diffusive
and convective contribution to the mass fraction variations as a function
of the molecular mass ratio.
For a multi-component mixture, it is easy to rationalize
that a conservative estimate of d can be done by using Eq.
(21) but with a different expression for D:

D ¼
ffiffiffiffiffiffiffiffiffiffiffi
Mmax

p
�

ffiffiffiffiffiffiffiffiffiffi
Mmin

pffiffiffiffiffiffiffiffiffiffiffi
Mmax

p
þ

ffiffiffiffiffiffiffiffiffiffi
Mmin

p ;

where Mmax and Mmin are the maximum and minimum
molecular masses between the species composing the gas
mixture.

3. Matrix solution of the Stefan–Maxwell–Knudsen

equations

In the last section we have shown that, in most of the
cases, only the diffusive terms of the flux equations contrib-
ute to the variations of gas composition through the por-
ous media. The simplified equations correspond to the
Stefan–Maxwell–Knudsen equations (11).

In this section, a matrix analytical solution of the diffu-
sion equations (11) is given.

Since the total pressure is not constant, it can be prefer-
able to rewrite Eq. (11) in terms of partial pressures instead
of molar fractions (pi = pxi):

r pi

RT

� �
¼
X

j

Njpi � N ipj

pDi;j

� Ni

DK
i

: ð22Þ

Because the pair diffusion coefficients (2) are proportional
to the inverse of the pressure, the product pDi,j is constant.

By summing and integrating Eq. (22), we get:

p ¼ pin �
X

j

Nj

DK
j

RTz; ð23Þ

where pin is the pressure at z = 0.
To get a matrix solution of the system it is convenient, to

avoid degeneracy, to use Eq. (23) to eliminate one out of
the equations (11). By substituting

pn ¼ p �
Xn�1

j¼1

pj ð24Þ

in Eq. (22) and using Eq. (23) we get:

1

RT
opi

oz
¼
Xn

j¼1

Njpi

pDi;j

�
Xn�1

j¼1

Nipj

pDi;j

� Ni

pDi;n

pin �
Xn

j¼1

Nj

DK
j

RTz�
Xn�1

j¼1

pj

 !

� Ni

DK
i

; i ¼ 1; . . . ; n� 1; ð25Þ

which is a system of n � 1 independent Eq. (25) in n � 1
independent unknowns (pi).

To solve analytically the above system of equations, we
write it in matrix form:

1

RT
oðpÞ
oz
¼ ½u�ðpÞ þ ðfÞ þ ðnÞRTz; ð26Þ
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where the elements of the n � 1Xn � 1 matrix [u] are given
by:

ui;j ¼ �
N i

pDi;j

þ N i

pDi;n

; i 6¼ j

ui;i ¼
Xn

k¼1

Nk

pDi;k

þ Ni

pDi;n

:

The n � 1 components of vectors (f) and (n) are given by:

fi ¼ �
Ni

DK
i

� Nipin

pDi;n

;

and

ni ¼
N i

pDi;n

Xn

k¼1

Nk

DK
k

:

The differential matrix equation (26) can be solved formally
as a scalar equation. By imposing the boundary conditions:

ðpðzÞÞ ¼ ðpinÞ; z ¼ 0;

the solution is:

ðpÞ � ðpinÞ ¼ ½expð½u�RTzÞ � ½1��½ðpinÞ þ ½u��1ðfÞ

þ ½u��2ðnÞ� � ½u��1ðnÞRTz: ð27Þ

Here above, [1] is the identity matrix. As usual, the expo-
nential of the [u] matrix should be intended as its polyno-
mial expansion and can be expressed in terms of the
eigenvalues (b) and the right eigenvectors [a] of [u] as:

expð½u�Þ ¼ ½a� expðbÞ½a��1
:

Notice that, as the matrix [u] is real but non symmetric, its
eigenvalues can be complex numbers. It is possible to dem-
onstrate that when the sum of all molar fluxes is zero, the
matrix [u] has a zero eigenvalue and it is not possible to de-
fine its inverse. Because such condition can be easily veri-
fied (as in the example of a methane-free SOFC anode
shown in the previous section) it is important to find a
way to circumvent the problem. At this scope, we can re-
write Eq. (27) as:

ðpÞ ¼ ½a�ðhÞ½a��1ðpinÞ þ ½a�ðvÞ½a��1ðfÞ þ ½a�ðxÞ½a��1ðnÞ;
ð28Þ

where the vectors (h), (v) and (x) are defined by

hi ¼ expðbiRTzÞ; vi ¼
expðbiRTzÞ � 1

bi
;

xi ¼
expðbiRTzÞ � 1� biRTz

b2
i

; for bi 6¼ 0

and

hi ¼ 1; vi ¼ RTz; xi ¼
1

2
ðRTzÞ2; for bi ¼ 0:
4. Results

In the previous section, we have shown that the problem
of solving the n coupled differential equations (11) can be
reduced to the problem of finding eigenvalues and eigen-
vectors of the n � 1Xn � 1 matrix [u]. This matrix problem
is equivalent to a n � 1th degree polynomial equation and,
therefore, has explicit solutions for n up to 4. However, the
general solutions for n > 2 have very complicated expres-
sions and it is not worth to show them. In such conditions,
it is preferable to use a numerical matrix solver to find the
matrix [a] and vector (b) to be inserted in Eq. (28).

In this section, we first present the general solution of
the two-component gas diffusion problem. Then, as an
example of numerical matrix solution, we describe a partic-
ular three-component case.

4.1. Example 1: two components Stefan–Maxwell–Knudsen

When n = 2, all the vectors and matrices, which are of
dimension n � 1, become scalars. In particular, we have:

u ¼ N 1 þ N 2

pD1;2

;

f ¼ � N 1

DK
1

� N 1pin

pD1;2

;

n ¼ � N 1

pD1;2

N 1

DK
1

þ N 2

DK
2

� �
:

By using these values, Eq. (27) becomes:

p1ðzÞ ¼ pin
1 þ exp

N 1 þ N 2

pD1;2

RTz

 !
� 1

" #

� pin
1 N 2 � pin

2 N 1

N 1 þ N 2

�
N 1pD1;2

ðN 1 þ N 2Þ2
2N 1 þ N 2

DK
1

þ N 2

DK
2

� �" #

þ N 1RTz
N 1 þ N 2ð Þ

N 1

DK
1

þ N 2

DK
2

� �
:

The case N1 + N2 = 0, corresponds to a zero eigenvalue of
[u]. In this case we must use Eq. (28) and obtain:

p1ðz;N 1 þ N 2 ¼ 0Þ ¼ pin
1 � N 1

pin

pD1;2

þ 1

DK
1

 !
RTz

� 1

2

N 2
1

pD1;2

1

DK
1

� 1

DK
2

� �
ðRTzÞ2:
4.2. Example 2: a methane fed solid oxide fuel cell anode

The anode of methane fed SOFC, in general contains a
five-component gas mixture of H2,CO, CH4, CO2 and H2O.

It can be easily demonstrated that, when the methane
steam reforming reaction is fast and irreversible, the shift
reaction is at equilibrium and methane is present, water
and carbon dioxide are fully consumed. In such conditions,
the molar fluxes of the three remaining species are simply
related to the cell current density I through the Faraday
constant F as follows:

NH2
¼ � I

F
; NCO ¼ �

I
2F

; NCH4
¼ I

2F
:



Fig. 4. Partial pressures profiles inside a SOFC anode.
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For this gas mixture we have D = .578 and, by inserting
this value in Eq. (21), we obtain dmin = 21.5. This means
that, by neglecting the convective terms, we make an error
of only about 5%. Therefore, this is a simple and physically
meaningful case of a three component Stefan–Maxwell–
Knudsen diffusion problem, which can be solved by the
above procedure.

To keep the results as general as possible, we rewrite Eq.
(26) in dimensionless form:

oð~pÞ
o~z
¼ ½~u�ð~pÞ þ ð~fÞ þ ð~nÞ~z;

where

~z ¼ N ref

Dref

RT
pref

z; ð~pÞ ¼ 1

pref

ðpÞ; ½~u� ¼ pref Dref

N ref

½u�;

ð~fÞ ¼ Dref

N ref

ðfÞ; ð~nÞ ¼ prefD
2
ref

N 2
ref

ðnÞ

and we have defined:

N ref ¼
I

2F
; pref ¼ 1 atm; Dref ¼

e
s

cm2 s�1:

In Table 1, the binary and Knudsen diffusion coefficients
corresponding to a temperature of 800 �C, atmospheric
pressure, and a mean pore diameter of one micrometer
are reported.

By assigning the indices 1, 2 and 3, to the species H2, CO
and CH4, the matrix ½~u� and vectors ð~fÞ and ð~nÞ corre-
sponding to these values are:

½~u� ¼
�:2721 :003702

�:3630 �:2740

� �
; ð~fÞ ¼

:44884

:83333

� �
;

ð~nÞ ¼
:070785

:13095

� �
:

The eigenvalues of ½~u� (obtained by using the LAPACK
[16] library) are:

ðbÞ ¼
�:2731þ :03665i

�:2731� :03665i

� �
;

the corresponding eigenvectors are

½a� ¼
�:002537� :10045i :99494

�:002537þ :10045i :99494

� �
;

Table 1
Binary and Knudsen diffusion coefficients corresponding to a temperature
of 800 �C, atmospheric pressure, and a mean pore radius of half
micrometer

DH2;CO 7.3e/s cm2 s�1

DH2;CH4
7.4e/s cm2 s�1

DCH4 ;CO 2.0e/s cm2 s�1

DK
H2

11.2e/s cm2 s�1

DK
CO 3.0e/s cm2 s�1

DK
CH4

4.0e/s cm2 s�1
and

½a��1 ¼
4:9778i �4:9778i

:50254 þ :01269i :50254þ :01269i

� �
:

By substituting the obtained values in Eq. (28) and by
using, as fuel, pure methane at atmospheric pressure
ð~pin

CH4
¼ 1; ~pin

H2
¼ 0; ~pin

CO ¼ 0Þ we get:

~pH2
ðzÞ ¼ :709½1� expð�:2731~zÞ cosð:03665~zÞ�

� :182 expð�:2731~zÞ sinð:03665~zÞ þ :262~z

~pCOðzÞ ¼ 1:624½1� expð�:2731~zÞ cosð:03665~zÞ�
þ 7:064 expð�:2731~zÞ sinð:03665~zÞ þ :13~z:

By using Eq. (24), we get:

~pCH4
ðzÞ ¼ 1� 2:333½1� expð�:2731~zÞ cosð:03665~zÞ�

� 6:882 expð�:2731~zÞ sinð:03665~zÞ � :132~z:

In Fig. 4, the solutions are plotted as a function of the
dimensionless coordinate ~z. For ~z ¼ 1:162, the methane
molar fraction goes to zero and the hydrogen molar frac-
tion reaches its maximum.

Because the hydrogen electrochemical reduction is gen-
erally much faster than the methane one, the larger is the
hydrogen molar fraction, the more efficient becomes the
global electrochemical energy transformation. Therefore,
the optimal depth of the anode diffusion layer should be
around the value of z ¼ Dref

N ref

pref

RT 1:162 ¼ e2F
sI

1
RT 1:162 ¼

2:544 e
sI cm, where the current density is expressed in units

of ampere per square centimeter.

5. Discussion and conclusions

In this paper we provide a matrix procedure for the solu-
tion of Eq. (11) and a quantitative estimate of the maxi-
mum error made while using it. Here we discuss the
limits of the error estimate, the numerical advantages of
using the matrix procedure and the possible extensions to
multi-dimensional problems.

5.1. Physical considerations

The relatively small contribution of the convective term to
the molar fraction variations derives from two main reasons.
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First, the Darcy mechanism is an indirect mechanism: a
certain number of gas–gas collisions are required in
order to transfer the momentum of a single molecule to
the porous media. Therefore, it is, in general, less effective
than the Stefan–Maxwell mechanism where, unless the

components of the mixture have very similar velocities, a
single collision is sufficient to transfer large part of the
molecule momentum.

Second, when the molecular species composing the mix-
ture have the same mass, the Darcy mechanism has no
effect on the mixture composition: the total pressure may
change but the molar fractions do not.

The first point is verified only when the species compos-
ing the gas mixture have different velocities. When the
molar fluxes are driven by chemical reactions, as for the
transport problems considered in this paper, the molar
fluxes are known a priori and this condition can be easily
checked. On the other hand, when the molar fluxes are dri-
ven by pressure gradients, the velocities depend on the
problem solution and, in general, the convective term can
not be neglected.

The second point, which helps in keeping the convective
contribution small unless the molecular species have very
different masses (see Figs. 2 and 3), holds only for the
molar fractions profiles. The convective contribution to
the partial pressure variations remains small due to the first
point considerations, but does not depend very much on
the molecular mass ratios. Therefore, the error estimates
given in Figs. 2 and 3 and in Eqs. (20) and (21) for the
molar fraction profiles, are not directly applicable to the
partial pressures. However, once the molar fractions are
known, by using Eq. (15) it is possible to estimate the error
on the pressures and, in case, to calculate the exact pressure
profile.

5.2. Numerical considerations

The matrix procedure, on one hand, contains an eigen-
value problem, which often requires numerical solution
algorithms, but, on the other hand, it is zero-dimensional,
as no spatial discretization is required. As a consequence,
this procedure has a number of advantages with respect
to the numerical ones:

� the solution is computationally faster;
� the numerical errors are generally smaller;
� explicit solutions exist in simple cases (see the examples

in the previous section).
5.3. The Stefan–Maxwell limit

In the limit of large pores, the Knudsen diffusion coeffi-
cients become very large. As a consequence, the vector (n)
becomes negligible, the elements of the vector (f) become:

fi ¼ �
N ipin

pDi;n

;

while the matrix [u] remains unchanged. In this limit, aside
from a slight difference in notation, Eq. (26) and its matrix
solution Eq. (27) become equal to Eqs. (11) and (19) of the
classic Krishna and Standart paper [17].

5.4. Extension to higher dimensionality

The 1D problem given by Eq. (13) with known fluxes and
boundary inlet values for the molar fraction, can be general-
ized in 2 or 3D as follows: when the gas molar fractions are
known on the inlet side of the diffusive region, and the molar
fluxes at the boundary with the reactive region (see Fig. 1),
the flux Eq. (13) can be solved together with the mass conser-
vation Eq. (3) to obtain the molar fraction profiles.

Clearly, the matrix procedure cannot be used in this
case, as the molar fluxes are not constant in 2 or 3D. On
the other hand, it is easy to see that the equations derived
in Appendix C are still valid. Therefore, for such class of
problems, Eq. (21) is still valid when we consider d is the
ratio between the maximum modulus of the diffusive and
convective terms. As a consequence, Eq. (21) provides a
general (not limited to 1D) criteria to check if the convec-
tive term of the flux equations is negligible.
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Appendix A. Comparison between convective and diffusive

terms for a binary mixture

In the case of a two-component gas, Eq. (13) becomes:

p
RT
rx1 ¼

x1N 2

DK
2

� x2N 1

DK
1

� x2N 1 � x1N 2

D1;2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive terms

þ B0p
l

x1x2
N 1

DK
1

þ N 2

DK
2

� �
1

DK
1

� 1

DK
2

� �

1þ B0p
l

x1

DK
1

þ x2

DK
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective term

: ðA1Þ

To compare the last term of Eq. (A1) (the convective term)
to the first three terms (the diffusive terms) we evaluate the
ratio d between the diffusive and the convective terms of
Eq. (A1):

d ¼
x1

N 2

DK
2

� x2

N 1

DK
1

� x2N 1 � x1N 2

D1;2

B0p
l x1x2

N 1

DK
1

þ N 2

DK
2

� �
1

DK
1

� 1

DK
2

� � 1þ B0p
l

x1

DK
1

þ x2

DK
2

� �� �
:

ðA2Þ
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By introducing the dimensionless variables:

c ¼
B0pD1;2

lDK
1 DK

2

; # ¼ DK
1 þ DK

2

2D1;2

; X ¼ x1 � x2;

N ¼ N 1 þ N 2

N 1 � N 2

; D ¼ DK
2 � DK

1

DK
2 þ DK

1

;

and after a few algebraic manipulations, Eq. (A2) becomes:

d ¼
X ðN þDÞ � 1�NDþ ð1�D2ÞðNX � 1Þ#
� 	

ð1þ ð1þDX Þc#Þ
ð1� X 2ÞDðN þDÞc#

;

ðA3Þ

# varies from zero to infinity following the predominance
of the Knudsen or Stefan–Maxwell diffusion mechanism.
As can be verified immediately, in both limits # = 0 and
# =1, d goes to infinity, meaning that the convective term
is negligible. To find if it is negligible also in the intermedi-
ate range, we look for the minimum of d with respect to the
parameter #:

#min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ðN þDÞ � 1�ND

ð1þDX Þð1�D2ÞðNX � 1Þc

s

dð#minÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�D2Þð1�NX Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þDX Þcð1þ ND� X ðN þDÞÞ

p� �2

ð1� X 2ÞDðN þDÞc
:

ðA4Þ

X depends on the problem solution and varies between �1
and 1. In both limits X = �1 and X = 1, d goes to infinity.
We look for the minimum of d with respect to the param-
eter X as well:

X min ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2
p

N

dð#min;X minÞ ¼ �
Nffiffi
c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

� D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2
p

þ N þ D
� �2

2D 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N 2
p� �

ðN þ DÞ
;

ðA5Þ

which is Eq. (18) of the text.
By introducing the value of Xmin in #min we obtain a

very simple expression:

#minðX minÞ ¼ ½cð1� D2Þ��
1
2: ðA6Þ
Appendix B. Evaluation of c

In Ref. [9] the dimensionless variable c1 ¼
B0pD1;2

lðDK
1
Þ2 is esti-

mate to be of the order of 0.11. The estimate given there
is quite rough as it uses the approximations D1,2 � D1,1

and l � l1 that can be quite wrong when the masses of spe-
cies 1 and 2 differ significantly. It can be easily seen by
exchanging the 1 and 2 indices that c1

c2
¼ M1

M2
and therefore

c is not constant as it depends on the molecular mass.
The symmetric form

c ¼
B0pD1;2

lDK
1 DK

2

; ðB1Þ

seems more promising.
For pores with circular sections we can write [9]:

B0 ¼
ea2

8s
;

DK
i ¼

2ea
3s

ffiffiffiffiffiffiffiffiffi
8RT
pMi

s
:

An expression for the pair diffusion coefficients can be
found in [12]:

pD1;2 ¼
e
s

2:628� 10�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

M1 þM2

2M1M2

r
T

r2
12XD

ðatm cm2 s�1Þ:

An expression for the gas viscosity of a pure gas is given in
Ref. [18]:

l ¼ 2:6693� 10�5

ffiffiffiffiffiffiffiffi
MT
p

r2Xl
ðg cm�1 s�1Þ:

The gas viscosity of a multi-component mixture can be ob-
tained by combining with quite complex formulas [12] the
gas viscosities of the pure components. For the sake of
the present estimate, it is sufficient to use the above formula
by considering the quantities on it as having values com-
prised between the 1 and 2 species values.

By substituting the above expressions in Eq. (B1), we
get:

c ¼ 9p
256

262:80

2:6693R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þM2

2M

r
r2Xl

r2
12XD

 !

¼ :1325

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þM2

2M

r
2r

r1 þ r2

� �2 Xl

XD
:

The quantity in parenthesis oscillates around the value of
one. The collision integrals Xl and XD are quite similar,
and when the 1 and 2 species have similar masses and
diameters, the factor in parenthesis becomes very close to
one. To estimate what happens when, in the opposite limit,
the 1 and 2 species are significantly different, let’s suppose
M1 = xM2 and r1 = x1/3r2. With M and r varying from the
1 and 2 species values, and x larger than one, we get:

2
ffiffiffi
2
p ð1þ xÞ1=2

ð1þ x1=3Þ2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þM2

2M

r
2r

r1 þ r2

� �2

< 2
ffiffiffi
2
p ð1þ xÞ1=2

ð1þ x1=3Þ2
x1=6:

For x = 10, this factor is comprised between .94 and 1.38
while for x = 100, it is still comprised between .893 and
1.924. We can conclude that even if c is not completely con-
stant, as it can slightly vary both with the shape of the
pores and with the molar masses and molar fractions, its
variations should be generally limited within a factor of 2.
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Appendix C. Comparison between the maximum convective

and diffusive terms for a binary mixture

In this appendix, we maximize, separately, the diffusive
and convective terms of Eq. (A1) and compare the resulting
expressions. In spite of doing such operation for a generic
porous media, to simplify the algebra, we operate in the
particular media that maximize the relative convective con-
tribution. In the notations of Appendix A, the dimension-
less parameter that characterizes the porous media is #, and
Eq. (A7) provides a simple expression of the value of #
maximizing the relative convective contribution. By using
such expression, and the notation of Appendix A, the dif-
fusive term from Eq. (A1), can be written as:

dif ¼ x1

N 2

DK
2

� x2

N 1

DK
1

� x2N 1 � x1N 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cDK

1 DK
2

q : ðC1Þ

Without loss of generality we can suppose DK
1 > DK

2 (other-
wise is sufficient to exchange the 1 and 2 indices). In such
conditions, and when the modulus of the molar fluxes is
limited under a given value Nmax, the maximum of the dif-
fusive term Eq. (C1) is obtained when x1 = 1 (x2 = 0). We
get:

dif < N max

1

DK
2

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cDK

1 DK
2

q
0
B@

1
CA: ðC2Þ

The convective term from Eq. (A1), can be written as:

conv ¼ D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

1� D2

r
1� X 2

1þ
ffiffiffiffiffiffiffiffi

c
1�D2

q
ð1þ XDÞ

N 1

DK
1

þ N 2

DK
2

� �
: ðC3Þ

When the modulus of the molar fluxes is limited under a gi-
ven value Nmax, the maximum of the convective term Eq.
(C3) is obtained for:

X ¼ 1

D
ffiffiffi
c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þð1þ cÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þc

qr
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
� ffiffiffi

c
p

 !
;

and N1 = N2 = Nmax. By substituting these values in Eq.
(C3), we get:
conv <
1

D
ffiffiffi
c
p N max

1

DK
1

þ 1

DK
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p

þ ffiffiffi
c
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þð1þ cÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þc

qr !
: ðC4Þ

Finally, by dividing Eq. (C2) by Eq. (C4) we get:

d ¼ D
2

ð1þ DÞ ffiffifficp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2
p

þ ffiffiffi
c
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þð1þ cÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� D2Þc

qr ;

which is Eq. (21) of the text.
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